Optimal and Sustainable Groundwater Use: Evidence from Nebraska

Abstract

The agricultural sector is the primary water consumer in the US. Groundwater is one of its main sources, with 65% of irrigated farmland relying on groundwater for their water supply. Groundwater use presents a common pool problem: if a farmer pumps groundwater, she decreases the aquifer’s water table and thus increases the cost of pumping for farmers in the same aquifer. Studying such a problem is challenging due to a lack of markets and data on groundwater use. In this paper, I leverage detailed farmer-level data on (ground)water use, crop choices, and crop yields to study the equilibrium implications of the current groundwater costs. I focus on the Ogallala Aquifer in Nebraska. In order to estimate the effect of water costs on water use and crop choices, I combine a crop-growth model with an economic model. I use the crop-growth model to recover the precise relation between water use and crop yields. I use the economic model to estimate the marginal cost of water for farmers. I then quantify how farmers respond to water costs by switching which crop they plant or changing the water use per planted crop. I find that farmers are inelastic to water costs: a 10% increase in the water cost would decrease water use by 3%. Moreover, I find that farmers adapt to higher water costs by both reducing the water use per planted crop and fallowing the land. Lastly, I utilize my estimates to compute the optimal and sustainable tax on groundwater use.

Publication
Optimal and Sustainable Groundwater Use: Evidence from Nebraska
Facundo Danza
Facundo Danza
PhD candidate in economics

PhD candidate in economics at NYU. Fields of interest : environmental economics, agricultural economics, energy economics.

Related