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Abstract

Weather shocks pose many challenges for workers in developing countries. Interna-
tional migration can work as a coping mechanism for this reality. The legal status of
migrants is critical to understand the effect of these shocks on workers’ well-being. In
this paper, we study the effect of weather shocks on legal and illegal migration from
rural Mexico to the United States. First, we find that weather shocks in the wet sea-
son increase migration. The increase is entirely driven by illegal migrants. Second,
we propose a mechanism to explain this result: the effect of weather on agricultural
production. We find that weather shocks decrease total harvested land and corn pro-
duction. Third, we show that young and unwealthy workers are more sensitive to
weather shocks. Lastly, we use our estimates to have a first glance at climate change’s
impact on migration. We find that climate change would increase illegal migration
significantly.
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1 Introduction

In developing countries, workers are highly dependent on the weather for their income and
well-being. Hence, weather shocks can dramatically change their career path and life expe-
rience (Cattaneo et al., [2019). International migration can work as a coping mechanism for
these shocks (Feng et al., 2010; [Jessoe et al., 2018; [Ibanez et al. |2021). The international
community is thus concerned about the influence of climate variability and climate change
on migration waves and the legal status of migrants (Gates, |2021)).

This concern is prevalent in rural Mexico. Mexican workers have a long tradition of
illegal migration to the United States: every year, 3 million agricultural workers try to
migrate illegally (Passel & D’Vera Cohn|, 2009). Moreover, 20 million agricultural workers
are exposed to weather shocks (Dalby, 2013). [Dalby| (2013) estimates that Mexico is losing
400 square miles of farmland each year due to droughts and irregularities in the rainy season.
Hence, the impact of weather shocks on (illegal) migration is of increasing relevance.

In this paper, we investigate how weather affects legal and illegal migration from rural
Mexico to the United States. First, we estimate the effect of weather shocks on migration
using individual-level data. We define weather shocks as standardized deviations of weather
variables[T] To recover the causal effect of weather shocks on migration, we use a two-way
fixed effects model. Second, we propose an underlying mechanism: the effect of weather on
agricultural production. Using municipal-level data, we recover the causal effect of weather
on agricultural production using the same econometric approach. Lastly, we use our results
to project the effect that climate change will have on migration.

Our main data source is the Mexican Migration Project (MMP). The MMP collects
information on potential and former migrants in all of Mexico. Importantly, it has de-

tailed information on the legal status of migrants, a key variable in our study. We combine

l“Standardized deviation” means the deviation of the weather variable with respect to the historical
mean divided by its standard deviation. Our weather variables are precipitation and average, maximum and
minimum temperature.



these data with Meteoblue weather data at the community levelE| This allows us to pre-
cisely determine the effect of weather shocks on small and medium-sized communities and
the consequential migration decisions of their inhabitants. We add municipal-level data on
agricultural production to explain the results through the effect of weather on agricultural
activity. Lastly, we use climate projections to study the effect that climate change will have
on migration.

Our results can be summarized as follows. First, we find that weather shocks in the
wet season have a significant effect on migration from rural Mexico to the United States.
The effect is entirely driven by illegal migrants. Furthermore, the effect is substantial: for
example, a standard deviation increase in average temperature generates a 22% increase in
migration with respect to the baseline.lﬂ In addition, the effect is more pronounced for young
and unwealthy workers. Second, we find that weather shocks have a significant effect on the
total harvested land and corn production. The effect is also substantial: for example, an
increase in one standard deviation in average temperature decreases the total harvested land
by 3.4% and the corn production by 4.4%. Lastly, we use climate projections to understand
the effect that climate change will have on illegal migration. Our back-in-the-envelope cal-
culations suggest that, in the scenario in which global temperature increases by 2°C, climate
change would increase illegal migration by 66%.

Our paper contributes to understanding the effect of weather shocks on international
migration by combining individual-level data on migration with community-level data on
weather. Since we have explicit information on the legal status of migrants, we can dive
into the effect of weather on legal and illegal migration separately. We also study the het-
erogeneous effects of weather shocks on migration, we quantify the effect of weather on

agricultural production, and we use our causal estimates to project the impacts of climate

2MMP defines communities broadly, from “ranchos,” which have a population of less than 2,500 people,
to middle-size cities, with less than 100,000 people.

30n average, 1.52% of our population migrates to the US in a given year. An increase in one standard
deviation of average temperature generates a 0.33 percentage point (p.p.) increase in the probability of
migration, thus the 22% with respect to the baseline.



change on migration.

Related Literature. Our contribution is threefold. First, we contribute to the discus-
sion on migration as a coping mechanism to weather shocks. The results in this literature
are mixed (Cattaneo et al., |2019). On the one hand, weather shocks can prevent migration
through liquidity constraints (Cattaneo & Peri, |2016; |Bazzi, 2017; Barbosa-Alves & Britos|,
2023)). On the other hand, weather shocks can foster migration as an insurance policy for
income variability and as a response to wage differentials (Hanson & Spilimbergo, 1999;
Mueller, Gray, & Kosed| 2014; |Jessoe et al., 2018]). Our results are in line with the latter.

Second, we contribute to understanding the weather as a driver of international migra-
tion. Feng et al.| (2010) show that weather-induced reductions in corn production increase
migration from Mexico to the United States. |Jessoe et al| (2018)) find that weather fluc-
tuations affect income and migration, both within Mexico and toward the United States.
Ibanez et al.| (2021)) show that temperature shocks increase migration from El Salvador to
the United States. We add further details to this literature on the migration decision, namely
the legal status of weather-induced migrants.

The legal status of migrants is particularly relevant for the US-Mexico case. Approxi-
mately 11 million Mexican migrants live in the United States illegally (Krogstad, Passel, &
Cohnl, |5)). Reinhold and Thom| (2013)) shows that Mexican workers try to migrate illegally
when they are young and come back to Mexico when they are old. |Chort and De La Rupelle
(2022) construct state-level flows of illegal immigrants from Mexico to the United States
and study the effect of extreme weather events and policies to mitigate their effects. We
contribute to this literature using individual-level data on migration and community-level
data on weather. This allows us to study the effect of weather on migration in a flexible
and precise way. It also allows us to investigate the heterogeneous effects of weather shocks.
Moreover, we use data on potential migrants; thus, we can project the effect that climate

change will have on migration.



Lastly, we explore a mechanism to explain our results: the effect of weather on agricultural
production. In Latin America, weather shocks worsen total production (Dell, Jones, and
Olken! (2009)). This is particularly prevalent in rural Mexico. Corn, Mexico’s main crop in
the wet season, is highly dependent on the weather (Schlenker & Roberts, 2009)). Skoufias
and Vinha/ (2013]) show that a 2°C increase in average temperature generates a 24% decrease
in corn production. [Skoufias (2007) reports that 65% of Mexican land is rainfed and that
agricultural workers do not have a strategy to deal with weather change. Feng et al.| (2010)
show that drought-induced productivity reductions in corn increase migration from Mexico
to the US. We provide further evidence in this regard by quantifying the importance of
weather shocks on agricultural production.

The remainder of the paper is organized as follows. Section [2describes the data. Section [3]
discusses our econometric analysis. Section[d]shows the results. Section[5|provides robustness

checks. Section [6] concludes.

2 Data

In this section, we describe our data sources. The main data source is the Mexican Migration
Project (MMP), which we commplement with weather data from Meteoblue. We also collect

data on agricultural production and climate change projections.

2.1 Main Data Source: Mexican Migration Project

Our main data source is the Mexican Migration Project (MMP). As described in its web-
page, “MMP is a unique source of data that enables researchers to track patterns and
processes of contemporary Mexican migration to the United States.” It interviews potential
Mexican migrants from 1982 to 2019. The interviews take place during winter, when seasonal
migrants are more likely to return. Although the survey is not created to be representative

of all migrants, it represents them closely (Massey & Zenteno, [2000; Massey & Capoferrol,


https://mmp.opr.princeton.edu/home-en.aspx
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2004; Nawrotzki & DeWaard, [2016)).

To be more precise, MMP chooses communities within Mexico and obtains a representa-
tive sample of them. Communities are of three types: “ranchos,” which have a population of
less than 2,500 people; towns, with 2,500 to 10,000 people; mid-sized cities, with 10,000 to
100,000 people; and metropolitan areas, usually a specific neighborhood within a large city.

MMP offers a variety of datasets. We focus on one of them, “LIFE.” “LIFE” collects
information on the entire history of the head of household in a retrospective fashion: in every
survey wave, the head of the household is asked about her location, employment status, and
demographic characteristics from her birth until the survey year. The main advantage of
these data is that they have explicit information on the legal status of migrants. Moreover,
MMP is conducted in many locations (more than 200), which allows us to exploit local
variations in weather. Its main disadvantage is that it does not include households whose
members are in the US in the survey year; in particular, it does not include households that
decided to move to the US once and forever.

We use the surveys from 2000 to 2019 and focus on the period 1990-2019. Since “LIFE”
is constructed retrospectively, this means that we have a (unbalanced) panel of 30 years for
all heads of households interviewed from 2000 to 2019. We only keep people in their working
years, from 18 to 65 years old. To minimize measurement error, we run our main analysis
using 10-year backward windows. Lastly, we focus on communities with less than 100,000
people, which are categorized as “ranchos,” towns, or mid-sized cities, as described before.
These communities are more likely to depend on agricultural production for their economic
activity. In summary, we have data on 11,788 individuals from 83 communities for 11-year
periods.

Table (1] provides summary statistics of our sample. Our sample is predominantly une-
ducated men, with an average age of 41 years old. More than half of our sample consists
of agricultural workers, and nearly 40% are owners of land or a business. On average, in a

given year, 1.52% of our population migrates to the United States, and 73% of them do so



illegally. The length of stay in the US varies dramatically, with an average stay of 28 months
and a standard deviation of 26 months.
Figure [1] illustrates the geographical location of our sample[] As shown on the map, the

sample includes communities all over rural Mexico.

Table 1: Summary Statistics

Variable Mean SD Min Max
Age 41.452  12.167 18 65
Male 0.876 0.330 0 1
Educ. Level (Yr) 6.980 4.348 0 23
Agricultural Worker 0.520 0.500 0 1
Land Owner 0.179 0.384 0 1
Business Owner 0.247 0.431 0 1
Owner 0.374 0.484 0 1
Migrate* 0.015 0.123 0 1
Legally Migrate* 0.004 0.064 0 1
[legally Migrate* 0.011 0.105 0 1
Length Stayed** (Mh) 28.680  26.500 1 132
Individuals 11,788 11,788 11,788 11,788
Observations 120,297 120,297 120,297 120,297

Notes: *Migrate refers to an indicative variable equal to one if the worker migrates to the US in a specific
period. Since the worker has to be in Mexico to be able to migrate, the total number of observations in that
variable is lower, 112,588. **Length of Stayed refers to the number of months migrants stay in the US;
thus, it is calculated only for those who did migrate to the US at some point in our data. The number of
observations in this case is 6,625.

2.2 Data: Other Sources

We complement our main data source with numerous others. For weather at the community
level, we use Meteoblue data. Meteoblue is a professional weather-forecast company that
offers, from 1979 onward, hourly-simulated weather data worldwide. More precisely, it offers
a 2km-2km dataset that covers various weather variables, such as precipitation, tempera-

ture, and evaporationE] Since we study weather shocks, it is vital that we count with precise

4For confidentiality reasons, we cannot share the exact location of the communities of this study. We
share a (slightly) disturbed location of the municipal centroids in which these communities belong instead.

5The company carefully validates its data by comparing historical simulated data with realized historical
weather on its website. You can check it out here: https://www.meteoblue.com/en/historyplus.


https://www.meteoblue.com/en/historyplus

Communities of MMP

Figure 1: MMP: Communities Location - 2000-2019

Table 2: Summary Statistics - Weather

Variable Mean SD  Min  Max SD within SD across
Precipitation (mm) 63.48 55.17 4.72 345.15 18.26 49.28
Avg Temperature (°C) 21.34 3.49 14.13 29.56 0.55 3.21
Max Temperature (°C) 26.77 3.51 18.56 34.50 0.83 3.27
Min Temperature (°C) 15.88 3.76 8.76  24.52 0.54 3.33
Communities 88 88 88 88 88 88
Observations 968 968 968 968 968 968

Notes: “SD” refers to the standard deviation of the correspondent variable across communities and time.
“SD within” is calculated as the average standard deviation of the correspondent variable of each community
across time. “SD across” is calculated as the average standard deviation of each year across communities.

estimations of location-specific weather. Furthermore, MMP surveys mostly small commu-
nities; another challenge to our data. Meteoblue data overcome both of these challenges. It
provides us with daily data on precipitation, average temperature, maximum temperature,
and minimum temperature for each one of the communities in our sample, from 1985 to
2020. Table 2 describes our weather data.

For agricultural production, we use data from the “Servicio de Informacion Agroalimenta-
ria y Pesquera” (SIAP) at the “Secretaria de Agricultura y Desarrollo Rural” of the Mexican
government.ﬁ We download total harvested land and corn grown for grain in the wet season

from 2003 to 2019. We focus on corn because it is by far the main crop in the Mexican wet

%You can download the data directly from https://nube.siap.gob.mx/cierreagricola/
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season. In our study period, 71% of the harvested land corresponds to corn. Furthermore,
corn production is highly dependent on weather, as discussed in Section

On the one hand, agricultural data are open access. On the other hand, they are only
available at the municipality level. Thus, we also need weather data at this level. We
use another open-access dataset, “Daymet,” from the Environmental Sciences Division at
Oak Ridge National Laboratory (Thornton et al., 2020). Daymet offers monthly data on
total precipitation and maximum and minimum temperature for all of North America at a
1km-1km level from 1980 to 2021. We aggregate this data at the municipality level using
municipality maps from the “Humanitarian Data Exchange” (HDX).E] The process can be
entirely replicated in our GitHub Repository.

Lastly, we use climate projections from TerraClimate, which offers worldwide estimates
of future climate at the 4km-4km level (Abatzoglou, Dobrowski, Parks, & Hegewischl, [2018]).
It provides these data for climatic variables and “pseudo-years,” which are projected weather
realizations. Essentially, the pseudo-years are constructed by simulating weather in a climatic
model in which the climate parameters shift as predicted by climate change. We aggregate

these data at the municipality level using HDX municipality maps.

3 Empirical Analysis

In this section, we show the relationship between weather shocks and migration.

Figure [2|illustrates our main point. On the x-axis, we plot standardized deviations of the
weather variable in the wet season. The standardized deviation is the difference between the
realization of the variable and its historical mean divided by its standard deviation. We also
call this deviation the “z-score” of the variable. For example, a “1” in the temperature plot
means that the temperature was one standard deviation above the historical temperature
in the community. On the y-axis, we plot the proportion of migrants in the population;

that is, the number of migrants divided by the total number of workers. The dots reflect

"You can download the maps directly from https://data.humdata.org/dataset/cod-ab-mex?
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Figure 2: Weather Shocks and Migration
Notes: The dots reflect the proportion of migrants in the population for the standardized deviation of precipi-
tation and maximum-temperature in the wet season. More specifically, each dot groups observations in deciles
of the z-score distribution and calculates the proportion of migrants for such deciles. The dotted vertical line
reflects the average z-score in our study period. The weather deviation is taken a period before the migration
decision. The historical mean is taken over the period 1985-2019.

the proportion of migrants for decile deviations of the weather variable. The relationship
between the variables is clear: the higher (lower) the temperature (precipitation), the higher
the migration. In addition, the effect is entirely driven by illegal migrants.

We add similar graphs for the average and minimum temperatures in the appendix (Fig-
ure . The results are on the same line: the higher the temperature, the higher the

migration. The formal econometric specification is discussed in the next section.

3.1 Econometric Specification

In order to identify the effect of weather shocks on migration, we use a two-way fixed-
effects model. First, we run each weather variable separately. More specifically, we estimate

Equation [T}

Yijt = 4 + Y + BuWj—1 + € (1)

10



where y;;; is the variable of interest for a person ¢ from community j at time ¢, e.g., did he
migrate to the US in that specific period;ﬂ «; is the person fixed effect; v, is the year fixed
effect; w;,—; is the weather “shock,” e.g., the z-score of the maximum temperature in the
wet seasonﬂlﬂ and ¢;;; is the error term. We cluster the errors at the community level.
Second, we allow for non-linear effects of weather. We define two specifications, Equation

and Equation [3}

Yijt = 0 + %+ BuWii—1 + BusWiy_y + €ije (2)

Yijt = 0 + Ve + Buwjs—1 + Bud(wje—1 > 0)w;—1 + € (3)

where y;;; is the variable of interest for a person ¢ from community j at time ¢, e.g., did he
migrate to the US in that specific period; «; is the person fixed effect; v, is the year fixed
effect; w;,; is the weather shock, e.g., the z-score of the maximum temperature in the wet
season; I(w;,—1 > 0) is an indicator function that equals one whenever the z-score is positive;
and €;;; is the error term. As before, we cluster the errors at the community level.

Lastly, we include both the average temperature and precipitation in the same specifica-

tion. More precisely, we estimate Equation [4}

Yijt = oG + e + Bitji—1 + Bppjr—1 + €ije (4)

where y;;¢ is the variable of interest for a person ¢ from community j at time ¢, e.g., did he
migrate to the US in that specific period; «; is the person fixed effect; ~; is the year fixed
effect; ¢;;_1 is the average temperature shock, the z-score of the temperature in the wet

season; p;,—1 is the precipitation shock, the z-score of precipitation in the wet season; and

8Due to the very definition of our migration variable, we only consider individuals that are in Mexico at
time ¢ — 1.

9The wet season in Mexico goes from April to September, as discussed in Skoufias, Vinha, and Conroy
(2011). This choice is thus in line with our proposed mechanism. Moreover, this is in line with [Schlenker and
Roberts| (2009) (albeit with a month difference), who find that precipitation and temperature from March
to August profoundly affect US crop production.

10The historical mean is calculated for the period 1985-2019.
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€;j¢ is the error term. We cluster the errors at the community level.

4 Results

4.1 First Specification

Table [3| shows our results for the first specification. Weather shocks in the wet season have
a significant effect on migration at a 5% level. More precisely, a one standard deviation
decrease in precipitation with respect to its historical mean generates a 0.08 percentage
points (p.p.) increase in the probability of migrating to the United States. Similarly, a one
standard deviation increase in average, maximum, and minimum temperature with respect to
their historical mean generates a 0.33, 0.35 and 0.33 p.p. increase in migration, respectively.

The effects are substantial. The average percentage of migrants in a given year is 1.52%.
Thus, a decrease in one standard deviation in precipitation implies a 5.26% increase in
the probability of migrating with respect to the baseline; and an increase in one standard
deviation on average, maximum and minimum temperature implies a 21.71%, 23.02% and
21.71% increase, respectively.

Interestingly, the effect is entirely driven by illegal migrants, as shown in Table A
decrease in one standard deviation of precipitation with respect to its historical mean gen-
erates a 0.06 p.p. increase in illegal migration; and an increase in one standard deviation in
average, maximum, and minimum temperature with respect to their historical mean gener-
ates a 0.34, 0.35 and 0.33 p.p. increase, respectively. The estimates for legal migration are

not significantly different from zero for any weather variable.

12



Table 3: Weather Shocks and Migration

Dependent Variable: Migrant
Model: (1) (2) (3) (4)
Variables
Dev Precipitation (Z-score, t-1) -0.0008**
(0.0004)
Dev Avg Temp (Z-score, t-1) 0.0033***
(0.0004)
Dev Max Temp (Z-score, t-1) 0.0035***
(0.0005)
Dev Min Temp (Z-score, t-1) 0.0033***
(0.0005)
Fixed-effects
id Yes Yes Yes Yes
year Yes Yes Yes Yes
Fit statistics
Observations 112,588 112,588 112,588 112,588
Adjusted R? 0.25256  0.25309  0.25302  0.25295

Clustered (commun) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Notes: The dependent variable is an indicator variable equal to one if the agent migrates to the US in that
period. The independent variables are calculated as the z-score of the weather variable in the wet season a
year before the migration decision. The historical mean is taken over the period 1985-2019.

13
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4.2 Second Specification: Nonlinear Effects

The results vary slightly if we allow for non-linear effects. We show the results only for illegal
migrants, who are the drivers of our results. We add the effect for all migrants and legal
migrants in the appendix (Tables to .

Table |5 shows the results for a quadratic specification. The quadratic term is signifi-
cant for precipitation and average temperature. These results indicate that large weather
fluctuations induce migration waves.

Table [6] shows the results that distinguish between positive and negative shocks. The
previous result on precipitation is also apparent in this case: precipitation deviations above
the historical mean are drivers of migration. In the case of average temperature, the effect
of temperature shocks on migration is more pronounced if the shock is above rather than
below the historical mean temperature. More specifically, a one standard deviation above
the historical mean generates a 0.41 p.p. increase in migration, larger than the 0.34 p.p.
discussed in the previous section. The differential result for positive shocks is not significant

for maximum and minimum temperature.

4.3 Third Specification: Temperature and Precipitation

When we estimate a specification with both the average temperature and precipitation, it
becomes more apparent that temperature is the variable that explains the results.

Table [7] shows our estimation. As before, the significant relationship between migration
and weather shocks concerns illegal migrants. Interestingly, the result is only significant for
the temperature variable. In this case, a standard deviation increase in average temperature

generates a 0.33 p.p. increase in migration.
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Table 5: Weather Shocks and Illegal Migration: Quadratic Specification

Dependent Variable: llegal Migrant
Model: (1) (2) (3) (4)
Variables
Dev Precipitation (Z-score, t-1) -0.0011**
(0.0004)
Dev Precipitation Sq (Z-score, t-1)  0.0005***
(0.0002)
Dev Avg Temp (Z-score, t-1) 0.0030***
(0.0004)
Dev Avg Temp Sq (Z-score, t-1) 0.0004*
(0.0002)
Dev Max Temp (Z-score, t-1) 0.0033***
(0.0004)
Dev Max Temp Sq (Z-score, t-1) 0.0002
(0.0002)
Dev Min Temp (Z-score, t-1) 0.0032*
(0.0006)
Dev Min Temp Sq (Z-score, t-1) 0.0001
(0.0003)
Fized-effects
id Yes Yes Yes Yes
year Yes Yes Yes Yes
Fit statistics
Observations 112,587 112,587 112,587 112,587
Adjusted R? 0.18091 0.18173  0.18155  0.18145

Clustered (commun) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Notes: The dependent variable is an indicator variable equal to one if the agent migrates illegally to the US
in that period. The independent variables are calculated as the z-score of the weather variable in the wet
season a year before the migration decision. “Sq” means the variable squared. The historical mean is taken

over the period 1985-2019.
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Table 6: Weather Shocks and Illegal Migration: Positive vs Negative Shocks

Dependent Variable: [llegal Migrant
Model: (1) (2) (3) (4)
Variables
Dev Precipitation (Z-score, t-1) -0.0023***
(0.0008)
Dev Precipitation > 0 (Z-score, t-1)  0.0029***
(0.0010)
Dev Avg Temp (Z-score, t-1) 0.0015**
(0.0008)
Dev Avg Temp > 0 (Z-score, t-1) 0.0026**
(0.0010)
Dev Max Temp (Z-score, t-1) 0.0024***
(0.0006)
Dev Max Temp > 0 (Z-score, t-1) 0.0016
(0.0010)
Dev Min Temp (Z-score, t-1) 0.0030**
(0.0013)
Dev Min Temp > 0 (Z-score, t-1) 0.0005
(0.0017)
Fized-effects
id Yes Yes Yes Yes
year Yes Yes Yes Yes
Fit statistics
Observations 112,587 112,587 112,587 112,587
Adjusted R? 0.18092  0.18175 0.18156  0.18145

Clustered (commun) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: The dependent variable is an indicator variable equal to one if the agent migrates illegally to the US
in that period. The independent variables are calculated as the z-score of the weather variable in the wet
season a year before the migration decision. “> 0” means that the variable is an interaction between the
weather variable and an indicator variable equal to one whenever the weather variable is greater than 0. The

historical mean is taken over the period 1985-2019.
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Table 7: Weather Shocks and Migration: Average Temperature and Precipitation

Dependent Variables: Migrant Illegal Migrant Legal Migrant

Model: (1) (2) (3)

Variables

Dev Prec (Z-score, t-1) -0.0005 -0.0003 -0.0003
(0.0004) (0.0003) (0.0002)

Dev Avg Temp (Z-score, t-1) 0.0033*** 0.0034** -0.0001
(0.0004) (0.0004) (0.0002)

Fized-effects

id Yes Yes Yes

year Yes Yes Yes

Fit statistics

Observations 112,588 112,587 112,587

Adjusted R? 0.25310 0.18170 0.41782

Clustered (commun) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Notes: The dependent variable is an indicator variable equal to one if the agent migrates to the US in that
period. The independent variables are calculated as the z-score of the weather variable in the wet season a
year before the migration decision. The historical mean is taken over the period 1985-2019.
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4.4 Mechanism

Ideally, we would observe income. We would then show that weather shocks affect income
which in turn affects migration. Since we do not observe income, we study one of its main
sources in rural Mexico: agricultural production. As discussed in Section [2| we have agri-
cultural data at the municipality level rather than at the community level.

Following our main specification, we focus on the wet season in Mexico. Since our sample
only includes 76 municipalities, we expand our data to all the municipalities within the 17
states that have at least one community in our sample, resulting in 1,960 municipalities.

Figure |3 illustrates our main point. It plots harvested-land deviations with respect to
their historical mean against precipitation and maximum-temperature standardized devia-
tions. The dots reflect the average deviations of harvested land for decile deviations of the
weather variable. The relationship between the variables is clear: the higher (lower) the
temperature (precipitation), the lower the harvested area. We add a similar plot for the

minimum temperature in the appendix (Figure [A.2]).

4.4.1 Econometric Specification

In order to identify the effect of weather shocks on agricultural production, we use a two-way
fixed-effects model, too. We estimate three different specifications.

Firstly, we run each weather variable separately; we estimate Equation [5}

Yjt = o + Y + BuWjr + €1 (5)

where y;; is the variable of interest for municipality j at time ¢, e.g., logarithm of the total
harvested area; a;, is the municipality fixed effect; 74 is the year fixed effect; wj; is the
weather shock, e.g., the z-score of the maximum temperature in the wet season; and e€;; is
the error term. We cluster the errors at the municipality level.

Secondly, we propose a non-linear model. We estimate Equation [6}
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Precipitation and Harvested Land Max Temperature and Harvested Land

=

Harvested Area - Deviation Historical Mean (%)

A 0 i 2 K 0 i 2
Precipitation - Deviation (Z-score) Max Temperature - Deviation (Z-score)
Figure 3: Weather Shocks and Harvested Land
Notes: The dots reflects the harvested-land deviations from its historical mean for precipitation and
mazimum-temperature z-scores in the wet season. More specifically, each dot groups the observations in

deciles of the z-score distribution and calculates the average deviation from the harvested land for such
deciles. The historical mean is taken over the period 1985-2019.

Yjt = o + e + Puwjt + 6w2w]2't + €t (6)

where y;; is the variable of interest for municipality j at time ¢, e.g., logarithm of the total
harvested area; o, is the municipality fixed effect; «; is the year fixed effect; wj; is the
weather shock, e.g., the z-score of the maximum temperature in the wet season; w?-t is the
weather shock squared; and €;; is the error term. As before, we cluster the errors at the
municipality level.

Thirdly, we include both average temperature and precipitation in our specification. More

precisely, we estimate Equation [7}

Yir = o + Y + Bitje + Bppje + €5 (7)

where y;; is the variable of interest for municipality j at time ¢, e.g., logarithm of the total

harvested area; «;, is the municipality fixed effect; 7, is the year fixed effect; t;; is the
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average temperature shock, the z-score of the average temperature in the wet season; pj; is
the precipitation shock, the z-score of the precipitation in the wet season; and €, is the error

term. We cluster the errors at the municipality level.

4.4.2 Results

The effect of weather on agricultural production is relevant in every specification.

Table |8| displays the results for the first specification. Weather shocks have a significant
effect on the total harvested area and corn production at a 1% level. More precisely, a
decrease in one standard deviation in precipitation relative to the historical mean increases
the total harvested area in 4.45% and the corn production in 4.94%. Similarly, an increase
in one standard deviation in average, maximum, and minimum temperature with respect
to their historical mean decreases the harvested land area at 3.39%, 2.06%, and 1.31%,
respectively, and decreases corn production at 4.44%, 2.16% and 2.18%, respectively.

Table [9 shows the results for the second specification. In most cases, non-linearities
are prevalent. Analogously to the migration case, the square coefficient of precipitation is
negative, which implies that large precipitation shocks generate a decrease in agricultural
production. The quadratic term is also negative for the temperature variables, indicating
that the effect of temperature on agricultural production is more prominent with higher
temperatures.

Lastly, Table includes both the average temperature and precipitation. The results
are in line with the second specification: the results are significant for both precipitation and

average temperature.
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Table 10: Weather Shocks and Agricultural Production: Average Temperature and Precipi-
tation

Dependent Variables: Log (Harv Area) - Ha Log (Corn Prod) - Gr, Ton

Model: (1) (2)

Variables

Dev Precipiation (Z-score) 0.0412** 0.0449*
(0.0042) (0.0053)

Dev Avg Temp (Z-score) -0.0251*** -0.0351*
(0.0050) (0.0069)

Fized-effects

id Yes Yes

year Yes Yes

Fit statistics

Observations 32,847 31,998

Adjusted R? 0.90525 0.89575

Clustered (id) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Notes: The dependent variable, for the first (last) column, is the log of the harvested area (tons of corn-for-
grain production) in the wet season. The independent variables are calculated as the z-score for the weather
variables in the same year and season. The average temperature is calculated as the simple average between
mazimum and minimum temperature. The historical mean is taken over the period 1985-2019.

4.5 Heterogeneity

In this section, we investigate the heterogeneous effects of weather shocks. Since we estimate
a two-way fixed effect model, we explore heterogeneity by dividing the sample into groups
and estimating the model for each group separately. We define three variables that are likely
to be relevant in the migration decision: age, wealth, and occupation.

Figure || illustrates our motivation for including age. It divides the sample into two
groups: “< 41,” workers younger than 41 years old, and “> 41,” workers older than 41 years
old. We choose 41 years old to divide the age range into two (almost) symmetric groups.
Clearly, the younger group has a higher proportion of (illegal) migrants and is much more
sensitive to temperature shocks. This is in line with the literature (e.g., Reinhold and Thom

(2013)).
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Figure 4: Weather shocks and Migration by Age
Notes: The dots reflect the proportion of Mexican migrants in the population for mazimum-temperature z-
scores in the wet season. More specifically, each dot groups observations in deciles of the z-score distribution
and calculates the proportion of migrants for such deciles. The weather deviation is taken the period before
the migration decision. “Age < 417 refers to the workers that were younger 41 years old the year before the
migration decision. The historical mean is taken over the period 1985-2019.

Figure [5| shows the results by wealth. Since we do not observe wealth directly, we use
ownership of land or a business as a proxy. Thus, we divide the sample into two groups:
“non-owners,” workers without land or a business, and “owners,” workers with land or a
business. The effect of wealth on migration are less salient than for age yet clear: non-
owners have a higher level of (illegal) migration and the effect of temperature is stronger for
such a group.

Lastly, Figure [6] shows the results by occupation. More precisely, we distinguish between

)

two groups: “Ag workers,” who were agricultural workers in the year of the weather shock,

Y

and “Non-Ag workers,” who were not agricultural workers in the year of the weather shock.

The effect of occupation on migration appears to be more diffuse than in the previous cases.
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Figure 5: Weather Shocks and Migration by Wealth
Notes: The dots reflect the proportion of Mexican migrants in the population for mazimum-temperature z-
score in the wet season. More specifically, each dot groups observations in deciles of the z-score distribution
and calculates the proportion of migrants for such deciles. The temperature deviation is taken from the period
before the migration decision. “Owner” refers to the workers that were owners of land or a business the year
before the migration decision. The historical mean is taken over the period 1985-2019.
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Figure 6: Weather shocks and Migration by Age
Notes: The dots reflect the proportion of Mexican migrants in the population for mazimum-temperature z-
score in the wet season. More specifically, each dot groups observations in deciles of the z-score distribution
and calculates the proportion of migrants for such deciles. The temperature deviation is taken from the period
before the migration decision. “Ag Worker” refers to the workers who were agricultural workers the year
before the migration decision. The historical mean is taken over the period 1985-2019.
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4.5.1 Econometric Specification

As discussed before, we estimate the heterogeneous effect of weather shocks on migration
using a two-way fixed-effects model and dividing the sample by groups. More precisely, we

estimate, separately for each group, Equation

Yijt = i + Ve + Buwj—1 + € (8)

where y;;; is the variable of interest for a person ¢ from community j at time ¢, e.g., did she
migrate to the US in that specific period; «; is the person fixed effect; ~; is the year fixed
effect; w;,_; is the weather shock, e.g., the z-score of the maximum temperature in the wet

season; and ¢;;; is the error term. We cluster the errors at the community level.

4.5.2 Results

We show the results only for illegal migration, which is the driver of our results. We add the
results for all migration and legal migration in the appendix (Tables to .

Table [11] shows the results for age. Young workers are much more sensitive to weather
shocks. For example, a one standard deviation increase in average temperature with respect
to the historical mean generates a 0.57 p.p. increase in illegal migration for young younger
than 41 years and a 0.09 p.p. increase in illegal migration for workers older than 41 years.

Table [12]illustrates the results by wealth. Wealthier workers are less sensitive to weather
shocks. For example, a one standard deviation increase in average temperature with respect
to the historical mean increase illegal migration by 0.38 p.p. for non-owners and by 0.26 p.p.
for owners.

Lastly, Table illustrates the results by occupation. The results are slightly more
pronounce for agricultural workers. It is worth noticing, however, that our sample is already
focused on the rural area of Mexico, which means that all workers likely depend on the

agricultural sector, regardless of whether they are working in such a sector.
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4.6 Extrapolation: Climate Change

Our estimates can help us understand the effect that climate change will have on migration.
In this section, we do some back-of-the-envelope calculations to read our results through the
lens of climate change.

Climate change will have an effect on both the level and the distribution of climatic
variables. To consider both effects, we use data from TerraClimate, which provides data from
“pseudo-years.” Essentially, these are simulated weather realizations that are generated in a
climatic model by changing the climatic variables considering the effect of climate change.
Their period of reference is 1990-2015.

We compare the weather in pseudo-years with actual years to understand the climatic
shift generated by climate change. We then use our causal estimates to study the effect of
climate change on migration.E

Figure|7|illustrates the shift in weather that climate change would imply. More precisely,
it shows the distribution of the z-scores of maximum temperature with and without climate
change. As expected, the distribution is shifted to the right. Furthermore, the variance of

the z-score increases.

4.6.1 Results

To project the effect of climate change on migration, we use the estimates in Table [l The
process goes as follows. First, we calculate the deviation that climate change implies in the
distribution of the weather variables. We then multiply such deviations by the corresponding
coefficient in Table [l

Table [14] summarizes our results. Naturally, illegal migration would increase: the higher
the increase in global temperature, the higher the increase in migration. For the climate

model in which the global temperature would increase by 2°C, the change in precipitation

HUnfortunately, we can only aggregate weather variables at the municipality rather than the community
level. We therefore use the municipality deviations as a proxy of the deviation that climate change would
imply at the community level.
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Maximum Temperature Distribution
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Figure 7: Climate Change: Maximum Temperature distribution for 1900-2015

Notes: This plot reflects the distribution of maximum temperature in the wet season for the municipalities
in the (pseudo-)years 1990-2015, for which we have climate change projections. The x-azis is calculated as
standardized deviation for the mazximum temperature for such a period. The y-azis reflects the approrimate
density of the variable. The sky-blue density shows the actual distribution of maximum temperature. The
orange density displays the projected distribution of maximum temperature for a climate scenario in which

global temperatures increase in 2°C. The historical period of reference is 1985-2019.
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would imply, on average, a 0.02 p.p. increase in illegal migration - a 1.18% increase with
respect to the baseline. For the climate 4°C model, the change in precipitation would imply
a 0.06 p.p. increase in migration - a 5.45% increase with respect to the baseline. The results
are much more salient for temperature. For the climate model in which global temperature
would increase in 2°C, the effect that climate change will have on maximum and minimum
temperature would imply, on average, a 0.73 p.p. and 0.86 p.p. increase in illegal migration,
respectively - a 66.36% and 78.18% increase with respect to the baseline. For the climate

4°C model, the change in would more than double.

Table 14: Projected Illegal Migration

2°C 4°C
Variable Deviation Migration (p.p) | Deviation Migration (p.p)
Precipitation (Z-score) -0.25 0.02 -0.71 0.06
(0.96) (0.081) (0.984) (0.083)
Max Temp (Z-score) 2.47 0.73 5.12 1.56
(1.809) (0.627) (2.3) (0.796)
Min Temp (Z-score) 2.22 0.86 4.73 1.77
(1.311) (0.431) (1.761) (0.579)

Notes: The headlines “2°C” and “4°C” refer to an increase in global temperatures for possible climate
scenarios. The columns “Deviation” calculate the average expected deviation for each wvariable for such
scenarios in the wet season in the municipalities of our study. The columns “Migration” refer to the average
increase in projected illegal migration in p.p. Standard deviations are added in parenthesis. The historical
period of reference is 1985-2019.

4.7 Discussion

Climate change supposes a structural change in the workers’ problem. Thus, to fully un-
derstand its effect on migration, we would need to add a structural model. The previous
exercise is, however, informative: the results are likely to be an upper bound to the actual
effect of climate change on migration, as workers will likely adapt to the new climate scenario

and thus diminish the impact of climate change on yields and migration.
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5 Robustness Checks

In this section, we do robustness checks for our main analysis. First, we define temperature
shocks differently. Since our proposed mechanism is agricultural production with emphasis
on corn, we investigate the effect of “days of excess heat,” days with an average temperature
above 29°C, following |Schlenker and Roberts (2009). Our results are in line with our main
specification and can be found in[A.T1} an increase of one excess heat day increases migration
by 0.02 p.p. The increase is entirely driven by illegal migrants.

Second, we crop the data differently. More specifically, we keep 8-year backward windows

and 12-year backward windows for information regarding migration of the head of household.

The results are virtually unchanged and can be found in Tables [A.12] [A.13] [A.14] and [A.15

in the appendix.
Third, we consider a different period for the historical mean. In our main analysis, we
used the period 1985-2019; in this robustness check, we use the period 1985-2005. The results

are very similar and can be found in Tables [A.16] and [A.17]in the appendix.

Lastly, we add communities with less than 500,000 people. The results are unchanged
and can be found in Tables and in the appendix.

6 Conclusion

We study how international migration can work as a coping mechanism for weather shocks.
We focus our work in rural Mexico, which has a long tradition of migrants to the United
States. Our detailed data allows us to dive into the effect of weather shocks on legal and illegal
migration separately. We further propose a mechanism to explain our results: the effect of
weather on agricultural production. Lastly, we project the effect that climate change will
have on migration.

Our main findings are the following. First, we find that shocks in the wet season increase

migration. The increase is entirely driven by illegal migrants. Second, we find that weather
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shocks decrease the total production of harvested land and corn. Third, we show that young
and less wealthy workers are more sensitive to weather shocks. Lastly, we extrapolate our
results using climate projection models. We find that climate change would increase illegal
migration substantially.

We see some venues in which our work can be expanded. First, the effect of climate
change on illegal migration is not fully captured in our results: our approach does not
account for adaptation, which will likely be an important factor in the future. Second, it
would be interesting to investigate the “delayed” effect of weather shocks. We show that
weather shocks generate an immediate increase in illegal migration; they might also generate
a delayed increase in legal migration. Lastly, it is important to understand the effect that
weather-induced migrants have on local markets.

Overall, our work highlights the relevance of the weather for international migration.

Climate change makes this discussion increasingly relevant.
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A Appendix

A.1 Weather shocks and migration
A.1.1 Plots

In this section, we add the plots for weather shocks and migration for average and minimum

temperature (Figure [A.1]).
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Figure A.1: Temperature Shocks and Migration
Notes: The dots reflect the proportion of migrants in the population for the standardized deviation on average
and minimum-temperature deviations in the wet season. More specifically, each dot groups observations in
deciles of the z-score distribution and calculates the proportion of migrants for such deciles. The dotted
vertical line reflects the average z-score in our period of study. The weather deviation is taken a period before
the migration decision. The historical mean is taken over the period 1985-2019.

A.1.2 'Weather Shocks and Migration: Nonlinear effects

In this section, we add the non-linear regressions for all migrants, Tables and [A.2] and
for legal migrants, Tables and [A4]

A.1.3 Heterogeneity Results

In this section, we add the results for heterogeneity for all migrants and legal migrants.

Tables and show the results by age; Tables and display the results by
wealth; and Tables and illustrate the results by occupation.
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Table A.1: Weather Shocks and Migration: Quadratic Specification

Dependent Variable: Migrant
Model: (1) (2) (3) (4)
Variables
Dev Precipitation (Z-score, t-1) -0.0014***
(0.0005)
Dev Precipitation Sq (Z-score, t-1)  0.0006***
(0.0002)
Dev Avg Temp (Z-score, t-1) 0.0027**
(0.0005)
Dev Avg Temp Sq (Z-score, t-1) 0.0005**
(0.0002)
Dev Max Temp (Z-score, t-1) 0.0032**
(0.0005)
Dev Max Temp Sq (Z-score, t-1) 0.0002
(0.0002)
Dev Min Temp (Z-score, t-1) 0.0031**
(0.0007)
Dev Min Temp Sq (Z-score, t-1) 0.0002
(0.0003)
Fized-effects
id Yes Yes Yes Yes
year Yes Yes Yes Yes
Fit statistics
Observations 112,588 112,588 112,588 112,588
Adjusted R? 0.25260 0.25313  0.25302  0.25294

Clustered (commun) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Notes: The dependent variable is an indicator variable equal to one if the agent migrates to the US in that
period. The independent variables are calculated as the z-score of the weather variable in the wet season a
year before the migration decision. “Sq” means the variable squared. The historical mean is taken over the

period 1985-2019.
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Table A.2: Weather Shocks and Migration: Positive vs Negative Shocks

Dependent Variable: Migrant
Model: (1) (2) (3) (4)
Variables
Dev Precipitation (Z-score, t-1) -0.0028***
(0.0009)
Dev Precipitation > 0 (Z-score, t-1)  0.0033***
(0.0011)
Dev Avg Temp (Z-score, t-1) 0.0008
(0.0009)
Dev Avg Temp > 0 (Z-score, t-1) 0.0034*
(0.0012)
Dev Max Temp (Z-score, t-1) 0.0021***
(0.0007)
Dev Max Temp > 0 (Z-score, t-1) 0.0020*
(0.0011)
Dev Min Temp (Z-score, t-1) 0.0031**
(0.0014)
Dev Min Temp > 0 (Z-score, t-1) 0.0003
(0.0017)
Fized-effects
id Yes Yes Yes Yes
year Yes Yes Yes Yes
Fit statistics
Observations 112,588 112,588 112,588 112,588
Adjusted R? 0.25261 0.25315  0.25304  0.25294

Clustered (commun) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Notes: The dependent variable is an indicator variable equal to one if the agent migrates to the US in that
period. The independent variables are calculated as the z-score of the weather variable in the wet season
a year before the migration decision. “> 0” means that the variable is an interaction between the weather
variable and an indicator variable equal to one whenever the weahter variable is greater than 0. The historical
mean is taken over the period 1985-2019.
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Table A.3: Weather Shocks and Legal Migration: Quadratic Specification

Dependent Variable: Legal Migrant
Model: (1) (2) (3) (4)
Variables
Dev Precipitation (Z-score, t-1) -0.0003
(0.0002)
Dev Precipitation Sq (Z-score, t-1) 6.5 x 107°
(9.3 x 1079)
Dev Avg Temp (Z-score, t-1) -0.0003
(0.0002)
Dev Avg Temp Sq (Z-score, t-1) 0.0001
(8.94 x 107°)
Dev Max Temp (Z-score, t-1) —6.13 x 107°
(0.0002)
Dev Max Temp Sq (Z-score, t-1) 4.53 x 107°
(7.89 x 1079)
Dev Min Temp (Z-score, t-1) —8.67 x 107°
(0.0003)
Dev Min Temp Sq (Z-score, t-1) 4.8 x 107°
(0.0002)
Fized-effects
id Yes Yes Yes Yes
year Yes Yes Yes Yes
Fit statistics
Observations 112,587 112,587 112,587 112,587
Adjusted R? 0.41782 0.41782 0.41781 0.41781

Clustered (commun) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Notes: The dependent variable is an indicator variable equal to one if the agent migrates legally to the US in
that period. The independent variables are calculated as the z-score of the weather variable in the wet season
a year before the migration decision. “Sq” means the variable squared. The historical mean is taken over the

period 1985-2019.
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Table A.4: Weather Shocks and Legal Migration: Positive vs Negative Shocks

Dependent Variable: Legal Migrant
Model: (1) (2) (3) (4)
Variables
Dev Precipitation (Z-score, t-1) -0.0005
(0.0004)
Dev Precipitation > 0 (Z-score, t-1)  0.0004
(0.0005)
Dev Avg Temp (Z-score, t-1) -0.0007
(0.0005)
Dev Avg Temp > 0 (Z-score, t-1) 0.0008
(0.0006)
Dev Max Temp (Z-score, t-1) -0.0003
(0.0004)
Dev Max Temp > 0 (Z-score, t-1) 0.0004
(0.0005)
Dev Min Temp (Z-score, t-1) 7.41 x 107°
(0.0005)
Dev Min Temp > 0 (Z-score, t-1) -0.0002
(0.0007)
Fixed-effects
id Yes Yes Yes Yes
year Yes Yes Yes Yes
Fit statistics
Observations 112,587 112,587 112,587 112,587
Adjusted R? 0.41782 0.41782 0.41781 0.41781

Clustered (commun) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Notes: The dependent variable is an indicator variable equal to one if the agent migrates legally to the US
in that period. The independent variables are calculated as the z-score of the weather variable in the wet
season a year before the migration decision. “> 0” means that the variable is an interaction between the
weather variable and an indicator variable equal to one whenever the weahter variable is greater than 0. The
historical mean is taken over the period 1985-2019.
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Table A.11: Temperature Shocks and Migration - Days above 29°C

Dependent Variables: Migrant  Illegal Migrant Legal Migrant

Model: (1) (2) (3)

Variables

Days Above 29°C (#, t-1)  0.0002*** 0.0002*** 0.000008
(0.00004) (0.00003) (0.00002)

Fized-effects

id Yes Yes Yes

year Yes Yes Yes

Fit statistics

Observations 121,299 121,298 121,298

Adjusted R? 0.24964 0.18066 0.40719

Clustered (commun) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: The dependent variable for the first column is an indicator variables equal to one if the agent migrates
to the US in that period. The dependent variable for the second (thirst) column is an indicator variables
equal to one if the agent migrates illegally (legally) to the US in that period. The independent variable is
calculated as total days above 29°C in the wet season a year before the migration decision.

A.1.4 Robustness Checks

In this section, we add the robustness checks discussed in Section [5} Table shows the

results for days-above-29°C specification; Tables[A.12|and [A.13|show the results using 8-year

backward windows; Tables [A.14] and [A.15| show the results using 12-year backward windows;

Tables [A.16] and [A.17] show the results using 1985-2005 as the historical period; and Tables

and show the results for communities with less than 500,000 people.
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Table A.12: Weather Shocks and Migration - 8 years-window

Dependent Variable: Migrant
Model: (1) (2) (3) (4)
Variables
Dev Precipitation (Z-score, t-1) -0.0009**
(0.0004)
Dev Avg Temp (Z-score, t-1) 0.0034***
(0.0006)
Dev Max Temp (Z-score, t-1) 0.0037*
(0.0006)
Dev Min Temp (Z-score, t-1) 0.0034***
(0.0006)
Fixed-effects
id Yes Yes Yes Yes
year Yes Yes Yes Yes
Fit statistics
Observations 92,000 92,000 92,000 92,000
Adjusted R? 0.27418  0.27468  0.27464  0.27457

Clustered (commun) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Notes: The dependent variable is an indicator variable equal to one if the agent migrates to the US in that
period. The independent variables are calculated as the z-score of the weather variable in the wet season a
year before the migration decision. The historical mean is taken over the period 1985-2019.
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Table A.14: Weather Shocks and Migration - 12 years-window

Dependent Variable: Migrant
Model: (1) (2) (3) (4)
Variables
Dev Precipitation (Z-score, t-1) -0.0010**
(0.0004)
Dev Avg Temp (Z-score, t-1) 0.0031***
(0.0004)
Dev Max Temp (Z-score, t-1) 0.0033**
(0.0005)
Dev Min Temp (Z-score, t-1) 0.0031***
(0.0005)
Fixed-effects
id Yes Yes Yes Yes
year Yes Yes Yes Yes
Fit statistics
Observations 131,776 131,776 131,776 131,776
Adjusted R? 0.23934  0.23981  0.23973  0.23968

Clustered (commun) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Notes: The dependent variable is an indicator variable equal to one if the agent migrates to the US in that
period. The independent variables are calculated as the z-score of the weather variable in the wet season a
year before the migration decision. The historical mean is taken over the period 1985-2019.
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Table A.16: Weather Shocks and Migration - Historical Mean 1985-2005

Dependent Variable: Migrant
Model: (1) (2) (3) (4)
Variables
Dev Precipitation (Z-score, t-1) -0.0005**
(0.0002)
Dev Avg Temp (Z-score, t-1) 0.0033***
(0.0004)
Dev Max Temp (Z-score, t-1) 0.0033**
(0.0005)
Dev Min Temp (Z-score, t-1) 0.0031***
(0.0005)
Fixed-effects
id Yes Yes Yes Yes
year Yes Yes Yes Yes
Fit statistics
Observations 112,588 112,588 112,588 112,588
Adjusted R? 0.25256  0.25309  0.25301  0.25293

Clustered (commun) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Notes: The dependent variable is an indicator variable equal to one if the agent migrates to the US in that
period. The independent variables are calculated as the z-score of the weather variable in the wet season a
year before the migration decision. The historical mean is taken over the period 1985-2005.

55



"C00G-GS6T Porsad aYyj 4200 UIYDY ST UDIUL JDIULOISIY DY, “UO0ISIIIP UOLDIEIUL

oY) 240faq UD2Ai D UOSDIS J9M Y] UL 2L0DS-Z Y] SD PAIDINIIDI AUD $2]qDLIDA Jupuadapur 2y powad py1 ur Gy 2yl o3 (fiypba))
figbappr sagvabiws Juabv o1y) Jr ouo 03 [pnbo $9)qDLIDA LOIDIIPUL UD ST ‘SUWNI0D ¥ (15D]) 1542 oY) 4O D)qDIIDA JUIPUIIP DY, 5IION

10 ‘% G0°0 ‘s TO0 “ynxe 752P0D frublg
§2591YJUAIDA UL SLOLID-PADPUDIS (UNUULOD) PAUIIST]))

I8LTF 0 ISLTF0  ISLIFO Z8LIT 0 PPIST'0  €GIST'0  OLIST'0  9808T°0 A1 poisulpy
L]S'TTT L8G'TIT  L8S'TIT L8S'TIT L8G'CIT  L8G'ZIT  LSG'ZIT  L8S'ZIT SUOTYRAIOS( ()
501951018 1]
SOX SOX Sox Sox Sox Sox SOX SoX IeaA
Sox SOX Sox Sox Sox Sox Sox Sox pr
§199 [fo-pa]
(2000°0) (7000°0)
¢—0T X 68°G— «xG€00°0 (T-9 ‘01008-7) dwa, Uy A9(]
(2000°0) (¥000°0)

0T X T «+£€00°0 (1-1 ‘0100s-7) dwd, XRN AO(]

(2000°0) (£000°0)
1000°0- «+7€00°0 (1-3 ‘0100s-7) duraT, SAY Ad(]

(c_0T X 9¢'8) (2000°0)

T000°0- L£000°0- (T-1 ‘0100s-7) uoryeptdioald Ad(]
$31QDILDA
(8) (L) (9) (¢) (¥) (¢) (2) (1) PPOIN
JURISI]\ [RS] JURISIIN [RSO[[] :so[qerreA juapuado(]

G00Z-GRGT URSIN [ROLIOISTH - STYR)G [BFor] A UOIPRISI[\ pue SYOOUS IOYJeap\ LTV O[qR],

26



Table A.18: Weather Shocks and Migration: Communities with less than 500,000 people

Dependent Variable: Migrant
Model: (1) (2) (3) (4)
Variables
Dev Precipitation (Z-score, t-1) -0.0010**
(0.0004)
Dev Avg Temp (Z-score, t-1) 0.0032***
(0.0004)
Dev Max Temp (Z-score, t-1) 0.0034**
(0.0005)
Dev Min Temp (Z-score, t-1) 0.0030***
(0.0005)
Fixed-effects
id Yes Yes Yes Yes
year Yes Yes Yes Yes
Fit statistics
Observations 121,299 121,299 121,299 121,299
Adjusted R? 0.24955  0.25005  0.24999  0.24988

Clustered (commun) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Notes: The dependent variable is an indicator variable equal to one if the agent migrates to the US in that
period. The independent variables are calculated as the z-score of the weather variable in the wet season a
year before the migration decision. The historical mean is taken over the period 1985-2019.
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Min Temperature and Harvested Land

5,

Harvested Area - Deviation Historical Mean (%)

0 1
Min Temperature - Deviation (Z-score)

Figure A.2: Minimum Temperature Shocks and Harvested Land
Notes: The dots reflects the harvested-land deviations for its historical mean for minimum-temperature stan-
dardized deviations. More specifically, each dot groups the municipalities in deciles of the z-score distribution
and calculates the average deviation from the harvested land for such deciles.

A.2 Agricultural Production

In this section, we add the plot for agricultural production and minimum temperature shocks

(Figure |A.2]).
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